
British Journal of Mathematics & Computer Science
20(1): 1-12, 2017; Article no.BJMCS.30345

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Stability Analysis for Stochastic Differential Equations
in Virology

Marouane Mahrouf1∗ , El Mehdi Lotfi1, Mehdi Maziane1,
Khalid Hattaf1,2 and Noura Yousfi1

1Department of Mathematics and Computer Science, Faculty of Sciences Ben M’sik, Hassan II
University, P.O.Box 7955 Sidi Othman, Casablanca, Morocco.

2Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef,
Casablanca, Morocco.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/BJMCS/2017/30345
Editor(s):

(1) Nikolaos Dimitriou Bagis, Department of Informatics and Mathematics, Aristotelian
University of Thessaloniki, Greece.

Reviewers:
(1) Uttam Ghosh, University of Calcutta, West Bengal, India.

(2) Gilberto Gonzalez, University of Los Andes, Venezuela.
(3) Rachel Waema Mbogo, Institute of Mathematical Sciences (IMS), Strathmore University,

Nairobi, Kenya.
Complete Peer review History: http://www.sciencedomain.org/review-history/17342

Received: 3rd November 2016
Accepted: 2nd December 2016

Original Research Article Published: 24th December 2016

Abstract
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1 Introduction
The mathematical modeling of the viral infections has played an important role in the better
understanding of the dynamic of the viruses that invade almost any type of body tissue, from the
brain to the skin [1], such as the human immunodeficiency virus (HIV), the hepatitis B virus (HBV),
the hepatitis C virus (HCV) and the Influenza which are the major diseases in the world. In the last
decade, ordinary differential equations have been used by many authors in epidemiology as well as
virology [2–10]. The basic and the important research subjects of this systems are existence of the
threshold value which distinguishes whether the local and global stability of steady states, existence
of periodic solutions, persistence and extinction of disease.

Recently, Hattaf et al. [11] studied the dynamical behavior of a virus dynamics model with general
incidence rate and cure rate described by the following viral infection model

dx(t)

dt
= λ− δx(t)− f

(
x(t), y(t), v(t)

)
v(t) + ρy(t),

dy(t)

dt
= f

(
x(t), y(t), v(t)

)
v(t)− (a+ ρ)y(t),

dv(t)

dt
= ky(t)− µv(t),

(1)

where x(t), y(t) and v(t) denote the concentration of uninfected cells, infected cells and virus
particles produced by infected cell at time t, respectively. The λ and k are the recruitment rate of
uninfected cells and the production rate of the free virus by an infected cell. The ρ is the cure rate of
the infected cells to uninfected cells. The δ, a and µ are, respectively, the death rates of uninfected
cells, infected cells and free virus with µ > a. Biologically speaking, the natural death rate of free
virus is always bigger then the natural death rate of infected cells. The term f(x, y, v)v describes
the incidence of virus infection of healthy x cells. The incidence function f(x, y, v) is assumed to
be continuously differentiable in the interior of IR3

+ and satisfies the following hypotheses:

f(0, y, v) = 0, for all y ≥ 0 and v ≥ 0, (H1)
∂f

∂x
(x, y, v) > 0, for all x > 0, y ≥ 0 and v ≥ 0, (H2)

∂f

∂y
(x, y, v) ≤ 0 and

∂f

∂v
(x, y, v) ≤ 0, for all x ≥ 0, y ≥ 0 and v ≥ 0. (H3)

As in [11], the basic reproduction number is given by

R0 =
kf(

λ

δ
, 0, 0)

(ρ+ a)µ
,

which biologically represents the average number of secondary infections produced by one infected
cell during the period of infection when all cells are uninfected. Moreover, Hattaf et al. [11] has
proved that if R0 ≤ 1, the system (1) has unique infection-free equilibrium corresponding to the
extinction of virus, and it is globally asymptotically stable. If R0 > 1, Ef becomes unstable and the
system (1) has an endemic equilibrium of the form E∗(x∗, y∗, v∗) and it is globally asymptotically
stable.

On the other hand, the model (1) don’t incorporate the effect of the environmental noise. While,
it is essential to reveal how the environmental noise affects the viral infection models. Using
stochastic models can attain more real benefits and can predict the future dynamics of the system
accurately. For better understanding the dynamics of the viral infection models, we introduce
stochastic perturbations into the deterministic model (1). Motivated by [12,13], the corresponding
to system (1), the stochastic viral infection model takes the following form
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

dx(t) =

[
λ− δx(t)− f

(
x(t), y(t), v(t)

)
v(t) + ρy(t)

]
dt+ σ1

[
x− x∗]dB1(t),

dy(t) =

[
f
(
x(t), y(t), v(t)

)
v(t)− (a+ ρ)y(t)

]
dt+ σ2

[
y − y∗]dB2(t),

dv(t) =

[
ky(t)− µv(t)

]
dt+ σ3

[
v − v∗

]
dB3(t),

(2)

where the stochastic perturbations are of white noise type and that they are directly proportional
to the deviation of a current state (x, y, v) from the endemic equilibrium E∗(x∗, y∗, v∗) for the
corresponding deterministic model (1). Bi(t) (i = 1, 2, 3) are independent standard Brownian
motion defined on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the
usual conditions, i.e., it is increasing and right continuous while F0 contains all P-null sets, and σi

represent the intensities of Bi(t) for (i = 1, 2, 3), respectively.

The rest of paper is organized as follows. In the next section, we prove that system (2) is biologically
well-posed by showing the global existence and positivity of solutions. The stochastic stability
analysis is investigated in sections 3. In Section 4, we give an application to HIV infection and their
numerical simulations to illustrate our main results. The paper ends with a brief discussion and
conclusion.

2 Well-posedness
The aim of this section is to prove that the solution of system (2) is global and positive for any
initial value. For this, we denote the set IR3

+ by

IR3
+ =

{
(x1, x2, x3) ∈ IR3| xi > 0, i = 1, 2, 3

}
.

Let ϕ(x) be a function defined on (0,+∞) as ϕ(x) = x− 1− ln(x).

First, we need the following lemma:

Lemma 2.1. [14] For all x > 0, we have

x ≤ 2ϕ(x) + 2 ln(2),∀x > 0. (3)

Theorem 2.2. For any initial value X(0) ∈ IR3
+, there exists a unique solution X(t) of system (2)

defined on [0,+∞) and this solution remains in IR3
+ with probability 1, namely X(t) ∈ IR3

+ for all
t ≥ 0 almost surely (briefly a.s.).

Proof. From [15], we deduce that system (1) has a unique local solution X(t) on t ∈ [0, τe), where
τe is the explosion time. To prove that this solution is global, we need to prove that τe = ∞ a.s.

Let p0 be sufficiently large so that every component of X(0) lies within the interval [
1

p0
, p0]. For

each integer p ≥ p0, define the stopping time

τp = inf

{
t ∈ [0, τe) : x(t) /∈ (

1

p
, p) or y(t) /∈ (

1

p
, p) or v(t) /∈ (

1

p
, p)

}
,

with the traditional setting inf ∅ = ∞, where ∅ denotes the empty set. It is clear that τp ≤ τe a.s.
Now, we need to prove that τp = ∞ a.s. Assume that this statement is false, then there is a pair of
constants θ ≥ 0 and ϵ ∈ (0, 1) such that

P
{
τ∞ ≤ θ

}
> ϵ.
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Hence there is an integer p1 ≥ p0 such that

P
{
τp ≤ θ

}
≥ ϵ for all p ≥ p1. (4)

We define a C2-function V : IR3
+ → IR+ as follows

V
(
X
)
= ϕ(

x

x0
) + ϕ(y) +

a

k
ϕ(v),

where x0 =
λ

δ
. Using It’s formula, we obtain

dV
(
X(t)

)
=

[(
1− x0

x

)(
λ− δx− f(x, v)v

)
+

(
1− 1

y

)(
f(x, v)v − ay

)
+
a

k

(
1− 1

v

)(
ky − µv

)
+

x0

2
σ2
1

(
1− x∗

x

)2
+

1

2
σ2
2

(
1− y∗

y

)2
+

a

2k
σ2
3

(
1− v∗

v

)2]
dt+ σ1

(
1− x0

x

)
(x− x∗)dB1(t)

+σ2

(
1− 1

y

)
(y − y∗)dB2(t) +

a

k
σ3

(
1− 1

v

)
(v − v∗)dB3(t)

=

[
− δ

x

(
x− x0

)2 − f(x, v)v

y
+ f(x, v)v − aµ

k
v − a

y

v
+ a+

aµ

k

+
x0

2
σ2
1

(
1− x∗

x

)2
+

1

2
σ2
2

(
1− y∗

y

)2
+

a

2k
σ2
3

(
1− v∗

v

)2]
dt

+σ1

(
1− x0

x

)
(x− x∗)dB1(t) + σ2

(
1− 1

y

)
(y − y∗)dB2(t)

+
a

k
σ3

(
1− 1

v

)
(v − v∗)dB3(t)

≤
[
f(x, v)v + a+

aµ

k
+

x0

2
σ2
1

(
1− x∗

x

)2
+

1

2
σ2
2

(
1− y∗

y

)2
+

a

2k
σ2
3

(
1− v∗

v

)2]
dt+ σ1

(
1− x0

x

)
(x− x∗)dB1(t)

+σ2

(
1− 1

y

)
(y − y∗)dB2(t) +

a

k
σ3

(
1− 1

v

)
(v − v∗)dB3(t).

According to Lemma 2.1, we have

f(x0, 0)v ≤ 2f(x0, 0) ln(2) + 2f(x0, 0)V
(
X(t)

)
.

Hence,

dV
(
X(t)

)
≤

(
M1 +M2V

(
X(t)

))
dt+ σ1

(
1− x0

x

)
(x− x∗)dB1(t)

+σ2

(
1− 1

y

)
(y − y∗)dB2(s) +

a

k
σ3

(
1− 1

v

)
(v − v∗)dB3(t),

where M1 and M2 are a positive constants.

Integrating both sides of the above inequality from 0 to τp ∧ θ, we get∫ τp∧θ

0

dV
(
X(t)

)
≤

∫ τp∧θ

0

M3

[
1 + V

(
X(s)

)
]ds+

∫ τp∧θ

0

σ1

(
1− x0

x

)
(x− x∗)dB1(s)

+

∫ τp∧θ

0

σ2

(
1− 1

y

)
(y − y∗)dB2(s)

+

∫ τp∧θ

0

a

k
σ3

(
1− 1

v

)
(v − v∗)dB3(s),
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where τp ∧ θ = min{τp, θ} and M3 = max{M1,M2}. Then taking the expectations leads to

EV
(
X(τp ∧ θ)

)
≤ V (X(0)) + E

∫ τp∧θ

0

M3

[
1 + V

(
X(s)

)]
ds

≤ V (X(0)) +M3θ +M3

∫ θ

0

EV
(
X(τp ∧ θ)

)
ds.

According to Gronwall inequality we reduce that

EV
(
X(τp ∧ θ)

)
≤ M4, (5)

where M4 =
(
V (X(0)) +M3θ

)
eM3θ.

Set Ωp = {τp ≤ θ} for p ≥ p1 and by (4), P (Ωp) ≥ ϵ. Not that for every ω ∈ Ωp, there is some

component of X(τp, ω) equal either p or
1

p
. Hence V

(
X(τp, ω)

)
is not less than the smallest of

p− 1− log(p) and
1

p
− 1− log(

1

p
) =

1

p
− 1 + log(p).

Consequently,

V
(
X(τp, ω)

)
≥

[
p− 1− log(p)

]
∧
[1
p
− 1 + log(p)

]
.

It then follows from (4) and (5) that

M4 ≥ E
[
1ΩpV

(
X(τp, ω)

)]
≥ ϵ

([
p− 1− log(p)

]
∧
[1
p
− 1 + log(p)

])
,

where 1Ωp is the indicator function of Ωp. Letting p → ∞ leads to the contradiction ∞ > M4 = ∞.
So we must therefore have τ∞ = ∞ a.s .

3 Stability Analysis
Clearly, the system (2) has the same equilibria as the system (1). Throughout this section, we
assume that R0 > 1, and we discuss the stability of the endemic equilibrium E∗ of system (2).
The stochastic system (2) can be centered at its interior endemic equilibrium E∗ by the changes of
the variables as follows

u1 = x− x∗, u2 = y − y∗ and u3 = v − v∗. (6)

Hence, the linearized version corresponding to system (2) around E∗ is given by

du(t) = F
(
u(t)

)
dt+G

(
u(t)

)
dB(t), (7)

where
u(t) =

(
u1(t), u2(t), u3(t)

)T
,

F (u) =
−δ − v∗

∂f

∂x
(x∗, y∗, v∗) −v∗

∂f

∂y
(x∗, y∗, v∗) + ρ −v∗

∂f

∂v
(x∗, y∗, v∗)− f(x∗, y∗, v∗)

v∗
∂f

∂x
(x∗, y∗, v∗) v∗

∂f

∂y
(x∗, y∗, v∗)− (a+ ρ) v∗

∂f

∂v
(x∗, y∗, v∗) + f(x∗, y∗, v∗)

0 k −µ

u,

G(u)=

 σ1u1 0 0
0 σ2u2 0
0 0 σ3u3

,

5
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B(t) =
(
B1(t), B2(t), B3(t)

)T
,

and the superscript "T" represents transposition.

It is easy to see that the stability of the endemic equilibrium E∗ of model (2) is equivalent to the
stability of the trivial solution u(t) = 0 in (7).

Denote by C1,2([0,+∞)× IR3; IR) the family of non-negative functions W (t, u) defined on [0,+∞)×
IR3 such that they are continuously differentiable with respect to t and twice with respect to u.
From [16], we define the differential operator L for a function W (t, u) ∈ C1,2([0,+∞)× IR3; IR) by

LW (t, u) =
∂W (t, u)

∂t
+ FT (u)

∂W (t, u)

∂u
+

1

2
Tr

[
GT (u)

∂2W (t, u)

∂u2
G(u)

]
, (8)

where
∂W (t, u)

∂u
=

(
∂W (t, u)

∂u1
,
∂W (t, u)

∂u2
,
∂W (t, u)

∂u3

)T

,

and
∂2W (t, u)

∂u2
=

(
∂2W (t, u)

∂ui∂uj

)
i,j

.

In order to obtain stability conditions, we will use the following theorem (for the proofs of these
theorem we refer the reader to [16]).

Theorem 3.1. Suppose that there exists a function W (t, u) ∈ C1,2([0,+∞)× IR3; IR) satisfying the
following inequalities:

η1|x|p ≤ W (t, u) ≤ η2|x|p, (9)

LW (t, u) ≤ −η3|x|p, (10)

where ηi, (i = 1, 2, 3), and p are positive constants. Then the trivial solution of (7) is exponentially
p-stable for t ≥ 0. Moreover, if p = 2, then the trivial solution is also called asymptotically mean
square stable and it is globally asymptotically stable in probability.

From theorem 3.1, we get the sufficient conditions for stochastic asymptotic stability of trivial
solution of (7) which are given by the following theorem.

Theorem 3.2. Assume that R0 > 1. If the following conditions are satisfied:

σ2
1 < 2δ, σ2

2 < a and σ2
3 < 2µ− a, (11)

then the trivial solution in (7) is asymptotically mean square stable and it is globally asymptotically
stable in probability.

Proof. We define the Lyapunov function W (t, u) as follows

W (t, u) =
2k

a

[
u1 + u2

]2
+

a

k
u2
3, (12)

It is easy to verify that inequality (9) holds true with p = 2.

6



Mahrouf et al.; BJMCS, 20(1), 1-12, 2017; Article no.BJMCS.30345

By applying the operator L on W (t, u), we get

LW (t, u) =
2k

a
(u1 + u2)

[(
− δ − v∗

∂f

∂x
(x∗, y∗, v∗)

)
u1 +

(
− v∗

∂f

∂y
(x∗, y∗, v∗) + ρ

)
u2

+
(
− v∗

∂f

∂v
(x∗, y∗, v∗)− f(x∗, y∗, v∗)

)
u3 + v∗

∂f

∂x
(x∗, y∗, v∗)u1

+
(
v∗

∂f

∂y
(x∗, y∗, v∗)− a− ρ

)
u2 +

(
v∗

∂f

∂x
(x∗, y∗, v∗) + f(x∗, y∗, v∗)

)
u3

]
+
2a

k

(
ku2 − µu3

)
u3 +

kσ2
1

a
u2
1 +

kσ2
2

a
u2
2 +

aσ2
3

k
u2
3

= −2k

a

(
δ − 1

2
σ2
1

)
u2
1 −

2k

a

(
a− 1

2
σ2
2

)
u2
2 −

a

k

(
2µ− σ2

3

)
u2
3 −

2k

a

(
a+ µ

)
u1u2

+2au2u3

≤ −2k

a

(
δ − 1

2
σ2
1

)
u2
1 −

2k

a

(
a− 1

2
σ2
2

)
u2
2 −

a

k

(
2µ− σ2

3

)
u2
3 + ku2

2 +
a2

k
u2
3

= −2k

a

(
δ − 1

2
σ2
1

)
u2
1 −

k

a

(
a− σ2

2

)
u2
2 −

a

k

(
2µ− a− σ2

3

)
u2
3.

Hence,
LW (t, u) ≤ −

(
Au2

1 +Bu2
2 + Cu2

3

)
, (13)

with
A =

2k

a

(
δ − 1

2
σ2
1

)
, B =

k

a

(
a− σ2

2

)
and C =

a

k

(
2µ− a− σ2

3

)
.

From the assumptions of theorem 3.2, we deduce that A,B and C are positive constants since µ > a.
Let 0 < η = min{A,B,C}. From (13), one sees that

LW (t, u) ≤ −η|u|2. (14)

According to theorem 3.1, we conclude that the trivial solution of system (7) is asymptotically mean
square stable. So we have the assertion.

Because the order of nonlinearity of system (2) is higher than one, we give the following corollary
without any proof, since the proof is similar to that of [17].

Corollary 3.3. Assume that the conditions of theorem 3.2 are satisfied, then the trivial solution
or the endemic equilibrium E∗ of system (2) is stable in probability.

Remark 3.4. Note that if all conditions (11) do not hold then LW > 0 and the trivial solution of
the system (7) can not be asymptotically mean square stable.

4 Application and Numerical Simulations
The main purpose of this section is to apply our theoretical results to the following stochastic HIV
infection model with Hattaf-Yousfi incidence rate (see Section 4, [18])

dx(t) =

[
λ− δx− βxv

α0 + α1x+ α2v + α3xv
+ ρy

]
dt+ σ1

[
x− x∗]dB1(t),

dy(t) =

[
βxv

α0 + α1x+ α2v + α3xv
− (a+ ρ)y

]
dt+ σ2

[
y − y∗]dB2(t),

dv(t) =

[
ky − µv

]
dt+ σ3

[
v − v∗

]
dB3(t),

(15)

where x(t), y(t) and v(t) denote the densities of uninfected represented by cytotoxic T lymphocytes
cells (CD4+T cells), infected cells and free virus particles at time t, respectively. The parameter β is

7
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the infection rate and α0, α1, α2, α3 are non-negative constants. It is very important to note that this
incidence rate includes many special cases existing in the literature such as the mass action called
also the bilinear incidence function when α0 = 1 and α1 = α2 = α3 = 0; the saturation incidence
rate when α0 = 1 and α1 = α3 = 0; the Beddington-DeAngelis functional response [19, 20] when
α0 = 1 and α3 = 0; the Crowley-Martin functional response introduced in [10] and used by Zhou et
al. [9] when α0 = 1 and α3 = α1α2; the more generalized response proposed by Hattaf et al. (see
Section 5, [21]) and used in [13,22–24] when α0 = 1.

In fact, system (15) is a special case of the model (2) with f(x, y, v) =
βx

α0 + α1x+ α2v + α3xv
. In

this case, it is easy to see that the hypotheses (H1)-(H3) are checked. Further, the basic reproduction

number of the corresponding deterministic of our model (15) is given by R0 =
λβk

µ(ρ+ a)(α0δ + α1λ)
.

In addition, if R0 > 1, the system (15) has a unique endemic equilibrium of the form E∗(x∗,
µ

k
v∗,

k

aµ
(λ−

δx∗)
)

where

x∗ =

√
∆2 + 4α3δk

(
a+ ρ

)(
α0aµ(a+ ρ) + α2λk(ρ+ a)

)
−∆

2α3δk
(
a+ ρ

) ,

with
∆ =

[
kaβ − α1aµ(a+ ρ)− α2δk(ρ− a)− α3λk(ρ+ a)

]
.

Now, we numerically simulate the solution of the stochastic system (15) and the solution of his
corresponding deterministic system,

(
σi = 0, i = 1, 2, 3

)
. Using Milstein’s Higher Order Method

mentioned in [25], we get the discretization equation, which is



xi+1 = xi +

[
λ− δxi −

βxivi
α0 + α1xi + α2vi + α3xivi

+ ρyi

]
∆t+ σ1

[
xi − x∗]√∆tξ1i

+
σ1

2

2

[
xi − x∗][∆tξ21i −∆t

]
,

yi+1 = yi +

[
βxivi

α0 + α1xi + α2vi + α3xivi
− (a+ ρ)yi

]
∆t+ σ2

[
yi − y∗]√∆tξ2i

+
σ2

2

2

[
yi − y∗][∆tξ22i −∆t

]
,

vi+1 = vi +

[
kyi − µvi

]
∆t+ σ3

[
vi − v∗

]√
∆tξ3i +

σ3
2

2

[
vi − v∗

][
∆tξ23i −∆t

]
,

where ξji, j = 1, 2, 3 and i = 1, 2, ..., n, are the independent Gaussian random variables N(0, 1) and
∆t is the time step. By using Matlab, we get the figures with initial conditions: x(0) = 700 cells
mm−3, y(0) = 10 cells mm−3, v(0) = 3.10−2 virions mm−3. The all biological parameter values are
taken from [24].

In Fig. 1, we choose the following parameter values: λ = 10 cells µl−1 day−1, δ = 0.0139 day−1,
β = 0.0012 µl virion−1 day−1, ρ = 0.01 day−1, a = 0.27 day−1, k = 600 virion cell−1 day−1, µ = 3
day−1, α0 = 0.5, α1 = 0.1, α2 = 0.01, α3 = 0.00001, σ1 = 0.02, σ2 = 0.004 and σ3 = 0.004. It is
obvious that R0 = 8.5123 > 1, σ2

1 = 0.0004 < 2δ = 0.0278, σ2
2 = 1.6 10−5 < a = 0.27 and σ2

3 = 1.6
10−5 < 2µ − a = 5.73 which satisfy theorem 3.2. Then the endemic equilibrium E∗ is globally
asymptotically stable. Fig. 1 demonstrates the above analysis.

In Fig. 2, we choose σ1 = 0.01, σ2 = 0.001, σ3 = 0.001 and do not change the other parameter values.
We show that the endemic equilibrium E∗ is globally asymptotically stable, and the fluctuation is
getting smaller with the decrease of the white noise (compare the Fig. 1 with the Fig. 2).
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Fig. 1. Deterministic and stochastic trajectories of model (15) with σ1 = 0.02,
σ2 = 0.004 and σ3 = 0.004, when R0 > 1
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Fig. 2. Deterministic and stochastic trajectories of model (15) with σ1 = 0.01,
σ2 = 0.001 and σ3 = 0.001, when R0 > 1
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In Fig. 3, we keep parameters as Fig. 1. We see that the solutions of both deterministic and
stochastic models converge to the endemic equilibrium E∗ with different initial condition values.
Then by theorem 3.2, E∗ is globally asymptotically stable.

Fig. 3. Deterministic and stochastic trajectories of model (15) with different initial
conditions, when R0 > 1

In Fig. 4, we choose σ2
1 = 0.4 > 2δ = 0.0278, σ2

2 = 16 > a = 0.27 and σ2
3 = 16 > 2µ − a = 5.73

which not satisfy the conditions (11) of theorem 3.2. Then the endemic equilibrium E∗ is not
asymptotically mean square stable.
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Fig. 4. Deterministic and stochastic trajectories of model (15) with σ1 = 0.2, σ2 = 4
and σ3 = 4, when R0 > 1
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5 Discussion and Conclusion
The purpose of this work is to study the effects of the environmental fluctuations on the dynamical
behavior of a viral infection model with general incidence rate by considering the white noise
perturbation around the endemic equilibrium. We have proved the global existence and positivity
of solution of system (2) to ensure the well-posedness of the problem. Further, we have shown that
if R0 > 1 and the intensities of white noise are less than certain threshold of parameters, then the
trivial solution of linearized system (7) is asymptotically mean square stable which gives the stability
in probability of the trivial solution of the original system (2). However, if there is no environmental
stochastic perturbation which means that σi = 0 for (i = 1, 2, 3), then the conditions of theorem
(3.2) are reduced to R0 > 1, which gives a nonlinear stability condition for the deterministic model
(1).

From the theoretical and numerical results, we see that when the noise density is not large, the
stochastic model (2) can preserves the property of the stability of the deterministic model (1). To
a great extent, we can ignore the noise and use the deterministic model (1) to describe the viral
dynamics. However, when the noise is sufficiently large it can force state variables to become largely
fluctuating. In this case, we can not use deterministic model (1) but instead stochastic model (2)
to describe the viral dynamics. Needless to say, both deterministic and stochastic epidemic models
have their important roles in the study of epidemics’s spreading.
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