El Naschie, Mohamed S. (2018) From Nikolay Umov E=kmc2 via Albert Einstein’s E=γmc2 to the Dark Energy Density of the Cosmos E=(21/22)mc2. World Journal of Mechanics, 08 (04). pp. 73-81. ISSN 2160-049X
WJM_2018040215414361.pdf - Published Version
Download (260kB)
Abstract
The paper starts from the remarkable classical equation of the great nineteenth century Russian physicist Nikolay Umov E=kmc2 where 1/2≤k≤1, m is the mass, c is the speed of light and E is the equivalent energy of m. After a short but deep discussion of the derivation of Umov we move to Einstein’s formula E=γmc2 where γ is the Lorentz factor of special relativity and point out the interesting difference and similarity between Umov’s k and Lorentz-Einstein γ. This is particularly considered in depth for the special case which leads to the famous equation E=mc2 that is interpreted here to be the maximal cosmic energy density possible. Subsequently we discuss the dissection of E=mc2 into two components, namely the cosmic dark energy density E(D)=(21/22)MC2 and the ordinary energy density E(O)=MC2/22 where E(D)+E(O)=MC2. Finally we move from this to the three-part dissection where we show that E is simply the sum of pure dark energy E(PD) plus dark matter energy E(DM) as well as ordinary energy E(O).
Item Type: | Article |
---|---|
Subjects: | Open Research Librarians > Engineering |
Depositing User: | Unnamed user with email support@open.researchlibrarians.com |
Date Deposited: | 09 Feb 2023 09:06 |
Last Modified: | 01 Jan 2024 12:56 |
URI: | http://stm.e4journal.com/id/eprint/131 |