Fretting and Fretting Corrosion Behavior of Additively Manufactured Ti-6Al-4V and Ti-Nb-Zr Alloys in Air and Physiological Solutions

Mace, Annsley O. and Kurtz, Michael A. and Gilbert, Jeremy L. (2024) Fretting and Fretting Corrosion Behavior of Additively Manufactured Ti-6Al-4V and Ti-Nb-Zr Alloys in Air and Physiological Solutions. Journal of Functional Biomaterials, 15 (2). p. 38. ISSN 2079-4983

[thumbnail of jfb-15-00038-v2.pdf] Text
jfb-15-00038-v2.pdf - Published Version

Download (27MB)

Abstract

Additive manufacturing (AM) of orthopedic implants has increased in recent years, providing benefits to surgeons, patients, and implant companies. Both traditional and new titanium alloys are under consideration for AM-manufactured implants. However, concerns remain about their wear and corrosion (tribocorrosion) performance. In this study, the effects of fretting corrosion were investigated on AM Ti-29Nb-21Zr (pre-alloyed and admixed) and AM Ti-6Al-4V with 1% nano yttria-stabilized zirconia (nYSZ). Low cycle (100 cycles, 3 Hz, 100 mN) fretting and fretting corrosion (potentiostatic, 0 V vs. Ag/AgCl) methods were used to compare these AM alloys to traditionally manufactured AM Ti-6Al-4V. Alloy and admixture surfaces were subjected to (1) fretting in the air (i.e., small-scale reciprocal sliding) and (2) fretting corrosion in phosphate-buffered saline (PBS) using a single diamond asperity (17 µm radius). Wear track depth measurements, fretting currents and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of oxide debris revealed that pre-alloyed AM Ti-29Nb-21Zr generally had greater wear depths after 100 cycles (4.67 +/− 0.55 µm dry and 5.78 +/− 0.83 µm in solution) and higher fretting currents (0.58 +/− 0.07 µA). A correlation (R2 = 0.67) was found between wear depth and the average fretting currents with different alloys located in different regions of the relationship. No statistically significant differences were observed in wear depth between in-air and in-PBS tests. However, significantly higher amounts of oxygen (measured by oxygen weight % by EDS analysis of the debris) were embedded within the wear track for tests performed in PBS compared to air for all samples except the ad-mixed Ti-29Nb-21Zr (p = 0.21). For traditional and AM Ti-6Al-4V, the wear track depths (dry fretting: 2.90 +/− 0.32 µm vs. 2.51 +/− 0.51 μm, respectively; fretting corrosion: 2.09 +/− 0.59 μm vs. 1.16 +/− 0.79 μm, respectively) and fretting current measurements (0.37 +/− 0.05 μA vs. 0.34 +/− 0.05 μA, respectively) showed no significant differences. The dominant wear deformation process was plastic deformation followed by cyclic extrusion of plate-like wear debris at the end of the stroke, resulting in ribbon-like extruded material for all alloys. While previous work documented improved corrosion resistance of Ti-29Nb-21Zr in simulated inflammatory solutions over Ti-6Al-4V, this work does not show similar improvements in the relative fretting corrosion resistance of these alloys compared to Ti-6Al-4V.

Item Type: Article
Subjects: Open Research Librarians > Multidisciplinary
Depositing User: Unnamed user with email support@open.researchlibrarians.com
Date Deposited: 06 Feb 2024 06:23
Last Modified: 06 Feb 2024 06:23
URI: http://stm.e4journal.com/id/eprint/2468

Actions (login required)

View Item
View Item